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Abstract

In this paper we consider the problem of form-
ing student teams adequate for company intership
tasks. First, we provide a formalisation of the
Feasible Team-For-Task Allocation Problem, and
show the computational hardness of solving it opti-
mally. Thereafter, we propose Edu2Com, an any-
time heuristic algorithm that generates an initial
team allocation that is then improved in an iterative
process. Finally, we conduct a systematic evalu-
ation and show that Edu2Com manages to (a) out-
perform CPLEX in computation time, and (b) reach
optimality, in the experiments considered.

1 Introduction

In the context of education, it is increasingly common that
students spend some time doing practical work in a company
as part of their curriculum. This work is sometimes remuner-
ated: companies benefit from this program as they get moti-
vated students that will work for reduced wages, and students
benefit from a first contact with the labour market. It has been
found that the employability of students at the end of their
studies increases thanks to these internships. Nowadays, ed-
ucation authorities match students with companies mostly by
hand. This paper formalises this matching process as a com-
binatorial optimization problem, proposes an anytime heuris-
tic algorithm that solves the combinatorial problem, and stud-
ies its computational complexity.

In what follows, in Sec 2 we formally describe the Feasi-
ble Team-For-Task Allocation Problem (FTAP), provide for-
mal definitions for the problem’s components, and study its
complexity. In Sec 3 we provide the encoding for a linear
program solver. In Sec 4 we propose our heuristic algorithm;
while in Sec 5 we conduct a systematic evaluation to show its
effectiveness.
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2 FTAP formalisation
Here we present the main components of the problem, and
related concepts.

2.1 Basic elements of the allocation problem
An internship program is a specified task that bridges the ed-
ucational and industrial worlds. That is, an internship pro-
gram, or simply a task,1 is characterised by a set of require-
ments on competencies acquired through education, and aims
at applying them in a practical context. Along with the re-
quired competencies, a task may require some times more
than one student. In general, we can have a large variety
of other constraints, such as temporal or spatial constraints;
however, within the scope of this work, we only focus on
team size constraints. Formally, a task t is a tuple 〈C,w,m〉,
where C is the set of required competencies, w : C → (0, 1]
is a function that weighs the importance of competencies, and
m ∈ N+ is the team size. The set of all tasks is denoted as T ,
|T | =M .

We also have students,2 i.e., the individuals who will form
teams in order carry out a task. An agent is characterised by
the competencies acquired via education. Formally, an agent
a is represented by a set of already acquired competencies
C. The set of all agents is denoted as A, |A| = N . Given
t ∈ T , we denote the set of all size-compliant teams for t as
Kt = {K ⊆ A : |K| = mt}.3

In order to quantify the suitability of a team K ∈ Kt
and develop a comparison measure for the different teams,
we turn to the relations between a task’s required competen-
cies and a team’s acquired competencies. That is, we assume
the existence of a fixed and finite set of competencies, en-
coded in a tree graph representation where a child-node is
a refined version of its parent-node. We define the seman-
tic similarity between two competencies as: sim(c1, c2) ={
1, if l = 0

e−λl e
κh−e−κh
eκh+e−κh

, otherwise
, where l is the shortest path in

the competencies’ tree between c1 and c2, h is the depth
1In the rest of the paper we will use the term task.
2For generality we will denote students by agents as the results

apply in a broader context.
3Note: we use the subscript a in C to refer to the set of compe-

tencies of an agent a ∈ A, and the subscript t to refer to the same
elements of task t ∈ T .



of the deepest competence subsuming both c1 and c2, and
κ, λ ∈ [1, 2] are parameters regulating the influence of l and
h on the similarity metric. This is a variation of the met-
ric introduced in [Li et al., 2003], to guarantee the reflexive
property of similarity.

Next, we adopt the notion of coverage to determine the
fitness degree of agent a ∈ A for competence c. We
define a’s coverage for competence c as: cvg(c, a) =
maxc′∈Ca{sim(c, c′)}. Now, given a task t ∈ T , we
define agent a’s coverage for task t as: cvg(t, a) =∏
c∈Ct cvg(c, a). To determine a team’s fitness for task t, we

need to solve a competence assignment problem. That is, we
let each agent commit themselves to a subset of the required
competencies instead of the whole set, in order to guarantee
the successful completion of the task by sharing duties and re-
sponsibilities. Following [Andrejczuk et al., 2019] we have:
Definition 1 (Competence Assignment Function (CAF)).
Given a task t ∈ T , and a team of agents K ∈ Kt, a compe-
tence assignment ηKt is a function ηKt : K → 2Ct , satisfying
Ct =

⋃
a∈K η

K
t (a).

The reverse function θKt : Ct → 2K provides us with the set
of agents in K that are assigned to competence c ∈ Ct.

However, not all CAFs are equally good. Intuitively, and
specially within the domain of education a notion of fair-
ness in assigning responsibilities to students is needed. As
such, in this work we are seeking CAFs that allow each
agent to actively participate in the task (inclusive assignments
wrt [Andrejczuk, 2018]), and at the same time no agent is
overloaded with excessive responsibilities. Given a task t,
and a team of agents K ∈ Kt, a Fair Competence Assign-
ment Function (FCAF) is a CAF that also satisfy two fur-
ther conditions: (i) each agent is responsible for at least one
competence, while an upper bound is placed to prevent a
‘super-competent’ agent take on too many responsibilities,
1 ≤ |ηKt (a)| ≤

⌈
|Ct|
|K|

⌉
∀a ∈ K; and (ii) each competence

will be at least one agent’s responsibility, 1 ≤ |θKt (c)|. We
denote the set of all FCAFs for task t and team K as HK

t .
Given a task t, and a team K ∈ Kt, an agent

a ∈ K, and FCAF ηKt , we define the agent’s
competence proximity to the task as cp

(
t, a, ηKt

)
=∏

c∈ηKt (s) max {1− wt(c), cvg(c, a)}, where wt(c) is the
importance weight of competence c ∈ Ct according to t. In-
tuitively, the better the coverage an agent has over a compe-
tence, the lower the impact of the competence’s importance;
while the lower the importance of a competence, the lower
the impact of the agent’s coverage over the competence. That
is, if a competence is not very important (e.g., w(c) → 0)
then it is not ‘catastrophic’ if the agent cannot cover this com-
petence very well; while if the agent covers the competence
very well, then, regardless the importance of the competence,
this is a desirable match. Now, we define the team’s com-
petence proximity for a task given a particular FCAF as the
Nash product of the competence proximity of each agent.
Definition 2 (Team’s Competence Proximity). Given a task
t, a team K ∈ Kt, and a competence assignment ηKt , the
competence proximity of team K for t is cp(t,K, ηKt ) =∏
a∈K cp(a, t, ηK

t ).

For a given task, and a given team, different FCAFs result
with different competence proximity. The optimum FCAF
for t and K is the one that maximises the team’s competence
proximity: ηK ∗t = argmaxηKt ∈ΘKt

{cp
(
t,K, ηKt

)
}. Finding

the best FCAF is an optimisation problem itself. Even though
the above is not a linear optimisation problem, it can be lin-
earised by considering the logarithm of cp

(
·
)

as follows:

ηK ∗t = argmax
ηKt ∈HK

{cp
(
t,K, ηKt

)
} ≡

argmax
ηKt ∈HKt

log
{ ∏
a∈K

cp(t, a, ηK
t )
}
= argmax

ηKt ∈HKt

∑
a∈K

log
{
cp(t, a, ηK

t )
}
.

2.2 The team allocation problem as an
optimisation problem

Given a task we aim to find the team that maximises com-
petence proximity, with the understanding that for each
candidate team we need to find its optimal FCAF. For-
mally, for a task t the best team is given by K∗ =
argmaxK∈Kt cp

(
t,K, ηK ∗t

)
.

Now, given a collection of tasks T , with |T | > 1, we need
to assign a team to each task so that the overall competence
proximity is maximised. Within the setting of internship pro-
grams and students we need to take into account the follow-
ing restriction: each student can be assigned to at most one
internship program, and each internship program can be as-
signed to at most one team. That is, suppose there is a func-
tion g : T → 2A, which maps each t ∈ T with a team of
agents K ∈ Kt, and G is the family of all such functions.

Definition 3 (Feasible Team Assignment Function (FTAF)).
Given a set of tasks T and a set of agents A, a feasible team
assignment function g ∈ G is such that for each pair of tasks
t1, t2 ∈ T with t1 6= t2, it holds that g(t1) ∩ g(t2) = ∅; and
for all t ∈ T it holds that |g(t)| = mt.

The family of all feasible team assignments is denoted by
Gfeasible. Next, we formalise our team allocation problem:

Definition 4 (Feasible Team-For-Task Allocation Problem
(FTAP)). Given a set of tasks T , and a set of agents A,
the FTAP problem is to select the team assignment function
g∗ ∈ Gfeasible that maximises the overall competence prox-
imity g∗ = argmaxg∈Gfeasible

∏
t∈T cp

(
g(p), p, η

g(p) ∗
p

)
.

The following establishes that FTAP is NP-complete by
reduction to a well-known problem.

Theorem 1. FTAP for more than one task is NP-complete.
Proof. The problem is inNP since we can decide whether a
given solution is feasible in polynomial time (O(

∑
p∈P mp)).

We show that the problem is NP-complete by using a re-
duction from Single Unit Auctions with XOR Constraints and
Free Disposals (referred to as BCAWDP with XOR Con-
straints) which is shown to be NP-complete [Sandholm et
al., 2002]. In BCAWDP with XOR Constraints, the auc-
tioneer has N items to sell, the bidders place their bids
Bi = 〈bi, bi〉 with bi a subset of items and bi the price.
Between two bids an XOR constraint can exist–not neces-
sarily for every pair of bids. The auctioneer allows free dis-
posals, i.e., items can remain unsold. Given an instance of



BCAWDP with XOR Constraints, we construct an instance
of FTAP as follows: “For each item i we create an agent
ai. For each task tj of size mtj we create

( |A|
mtj

)
different

bids Bjk = 〈bjk, bjk〉, where |A| is the number of items,
|bjk| = mti , and bjk = cp

(
tj ,bjk, η

bjk ∗
tj

)
. All bids created

for task tj are XOR-constrained bids. Moreover, each pair
of bids Bj,k, Bq,l such that bjk ∩ bql 6= ∅ are also XOR-
constrained.” Now FTAP has a feasible solution if and only
if BCAWDP with XOR constraints has a solution.

Typically, the winner determination problem for combinato-
rial auctions can be cast and solved as a linear program.

3 Solving FTAP as a linear program
Here, we encode FTAP (Def. 4) as an LP. First, for each team
K ⊆ A and task t ∈ T , we will use a binary decision variable
xtK . The value of xtK indicates whether team K is assigned
to task t as part of the optimal solution. Then, solving FTAP
amounts to solve the following non-linear program:

max
∏
t∈T

∏
k∈Kt

(
cp
(
K, t, η

K ∗
t

))xtK (2)

subject to:∑
K⊆S

x
t
K · 1K∈Kt ≤ 1 ∀t ∈ T (2a)

∑
t∈T

∑
K⊆A

x
t
K · 1a∈K · 1K∈Kt ≤ 1 ∀a ∈ A (2b)

x
t
K ∈ {0, 1} ∀K ⊆ A, t ∈ T (2c)

Constraint (2b) ensure us that each agent will be assigned
to at most one task; while constraint (2a) guarantees that
for each task will be formed at most one team. Notice
that the objective function (see Eq 2) is non-linear. Nev-
ertheless, we linearise it by maximising the logarithm of∏

p∈P
∏

k∈Kp

(
cp
(
K, p, ηK ∗p

))xpK . Thus, solving the non-
linear program above is equivalent to solving the following
binary linear program:

max
∑
p∈P

∑
K∈Kp

x
p
K · log

(
1 + cp

(
K, p, η

K ∗
p

))
(3)

subject to: equations 2a, 2b, and 2c. Therefore, we can solve
this LP with the aid of an off-the-shelf LP solver such as, for
example, CPLEX [IBM, 2019], Gurobi [GUROBI, 2018], or
GLPK [GLPK, 2018]. Given sufficient time, an LP solver
will return an optimal solution to FTAP.

At this point, it is worth mentioning that computing the ob-
jective function in equation 3 to build the LP requires the pre-
computation of the values of cp

(
K, p, ηK ∗p

)
, which amounts

to solve an optimisation problem for each pair of team and
task. This is bound to lead to large linear programs, as the
number of agents and tasks grow, and to inefficiency as an
LP solver is a general-purpose solver that does not exploit the
structure of the problem. To improve this, in the next section
we introduce the edu2com algorithm, an anytime algorithm
based on local search that yields approximate solutions to the
FTAP. Unlike an LP solver, edu2com is a specialised algo-
rithm that does exploit the structure of FTAP instances.

4 A Heuristic Algorithm for FTATP
Our approach, edu2com, consists of two stages: (a) find an
initial feasible allocation of agents to tasks, and (b) iteratively
improve the current allocation by means of swaps of members
between teams.
Stage A: Initial Assignment We first build an initial good
team allocation. We measure the tasks wrt their hardness,
taking into account the required competencies, along with
the capabilities of all available agents. Intuitively, the more
agents have high coverage over c, the more certain we are
that we can cover it, and therefore the less hard is the com-
petence. In the opposite case, we can be certain that the
agents cannot cover well the competence, and therefore the
competence is hard. To express this, we let H : [0, 1] →
[0, 4 · 0.5 log(0.5)], and use point x = 0.5 as the median
point of the function. In particular, we measure how hard is
to cover a competence c given a subset of agents A′ ⊆ A as:
h(c, A′) = −1/|A| ·

∑
a∈AH(cvg(c, Ca)), where: 4

H(x) =

{
x · log(x) + (1− x) · log(1− x) if x ≥ 0.5

4 · H(0.5)− (x · log(x) + (1− x) · log(1− x)) otherwise

Given a task t, we measure its hardness, or difficuly, as:
d(t, A) = ω ·

∑
c∈Ct

wt(c)
h(c,A)+ε , where ω is a normalising fac-

tor over the importance weights wt, and ε is a small positive
number. Function d allows us to rank the tasks by hardness.

Once we have evaluated the hardness of all tasks, we pro-
ceed by greedily assigning teams starting from the hardest
task. This is done by the following process: for task t we
sort the required competences according to their importance;
then we sort in a list the available agents so that the first agent
covers best the most important competence, the second agent
covers best the second most important competence, and so
forth. The team assigned to t consists of the mt first agents
out of the sorted list with the available agents.
Stage B: Improve the Assignment In the second stage we
try to improve the team allocation in an iterative process. At
each iteration we take one or more of the following actions:

1. For a random pair of tasks, find their best possible team
allocation using just the agents in their currently as-
signed teams.

2. If there are unassigned agents, attempt to swap anyone
of them with an assigned agent, and keep the change if
the competence proximity improves.

3. Force a systematic ‘local search’: for every pair of tasks,
attempt to swap any pair of agents.

Within an iteration, we always perform action 1. In case there
are unassigned agents we perform action 2. Action 3 is per-
formed after a fixed number of iterations.

5 Empirical Analysis
The purpose of this section is to empirically evaluate our al-
gorithm along four directions: (a) the quality of the solutions
that it produces in terms of optimality; (b) the time required
to produce optimal solutions wrt CPLEX, an off-the-shelf,

4Note that H(x) for x ≥ 0.5 coincides with the expression for
fuzzy entropy [Luca and Termini, 1974].



widely used, linear programming solver; and (c) the time
required to yield optimal solutions as the number of agents
and tasks grow. Overall, our results indicate that our algo-
rithm significantly outperforms CPLEX, and hence it is the
algorithm of choice to solve the Feasible Team Allocation for
Tasks Problem introduced in this paper.

5.1 Empirical settings
For our experimental evaluation we used synthetic data gen-
erated in the following way. For each task we select the
required team size mt ∼ U{1, 3}; the number of required
competences |Ct| ∼ U{2, 5}; and the weigh function is
wt(c) = N

(
µ = U(0, 1), σ = U(0.01, 0.1)

)
bounded in

(0, 1] for all c ∈ Ct. Then we generate mt agents for each
task t such that the acquired competencies of each agent con-
tain competencies that are (i) identical or (ii) a child-node5

of some required competence in t. With these generators
we built 60 problem instances, distributed in 3 families of
datasets: 20 instances with 10 tasks and ∼ 20.5 agents; 20
instances with 15 tasks and ∼ 30.6 agents; and 20 instances
with 20 tasks and∼ 41.35 agents. The experiments were per-
formed on a PC with Intel Core i7 (8th Gen) CPU, 8 cores,
and 8Gib RAM. For all implementations we used Python3.7.

5.2 Results
Quality analysis. Using the optimal solutions yielded by
CPLEX as a baseline, we can evaluate the quality of the so-
lutions computed by the Edu2Com algorithm. For all prob-
lem instances, Edu2Com reaches the optimal solution. More
precisely, for every problem instance, Edu2Com achieved a
solution whose value, in terms of competence proximity, is
equivalent to the optimal solution computed by CPLEX. Fig
1 shows the average quality ratio of Edu2Com wrt CPLEX
along time. We calculate the quality ratio by dividing the
competence proximity computed by Edu2Com by the optimal
value computed by CPLEX, and it is depicted as a percentage.
Runtime analysis. The greatest advantage of Edu2Com is
that it is way much faster than CPLEX. As shown in Fig 2
Edu2Com reaches optimality in less than half of the time re-
quired by CPLEX; while in the large setting of 20 projects our
algorithm can be up to ∼ 4 times faster than CPLEX. In Ta-
ble 1 we show the percentage of time required by Edu2Com
compared to CPLEX. Here we should note that the time con-
suming task for CPLEX is building of the LP encoding of
the problem, while solving the actual problem is done much
faster. This indicates that the problem instances at hand are
rather large than hard: as the number of tasks increases, so
does the number of agents, resulting in larger linear programs.
Anytime analysis. Last but not least we present our re-
sults on the anytime behaviour of Edu2Com (see Fig 1).
We observe that after completing the initial stage, the solu-
tion quality produced by our algorithm reaches 80%, 70%,
and 65% of the optimal solution, for problem instances with
10,15 and 20 tasks respectively. Furthermore, Edu2Com
reaches 80% quality in 0.001 × tCPLEX for 10 programs,
70% in 0.025 × tCPLEX for 15 programs, and 65% in
0.0002 × tCPLEX for 20 programs, where tCPLEX is the

5The competencies are structured in a tree graph.

dataset family M = 10 M = 15 M = 20
time percentage (%) 40% 45% 29%

Table 1: Percentage of required time of edu2com compared to CPLEX

time CPLEX needs to build the input and compute the opti-
mal solution. Finally we reach a quality of 80% of the op-
timum at 0.1%,20% and 13.5% of the time required by the
base-line algorithm (CPLEX) to reach optimality.

6 Conclusions and future work
In this paper, we formally defined the Feasible Team Allo-
cation for Tasks Problem (FTAP), and studied its complex-
ity. Then, we provided an encoding to optimally solve FTAP
by means of linear programming. Thereafter, we proposed a
heuristic anytime algorithm, Edu2Com, and conducted a sys-
tematic comparison of our approach versus the CPLEX LP
solver. Our experimental evaluation showed that edu2com
outperforms CPLEX in time, mainly because of the extremely
large input that the latter requires. As future work, we in-
tend to device more intelligent strategies during the second
stage of edu2com, instead of our current randomised strat-
egy. Furthermore, we will study the performance of edu2com
on actual-world data.
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Figure 1: Solution Quality: achieved competence proximity by Edu2Com / optimal competence proximity %.
The values are averages over 20 problem instances per family of datasets.

Figure 2: Average Competence Proximity vs Time
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