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Abstract
Deep Learning is changing the face of agricul-
ture. Combined with high-resolution aerial im-
agery, these methods enable farmers to understand
and manage their farms with previously unseen pre-
cision and efficiency. Beyond reducing costs for an
industry already under significant economic stress,
these advances have key environmental benefits as
well: maximizing production, reducing waste, an-
ticipating disruptions to supply chains, and limiting
the use of chemicals and water through targeted ap-
plication. Our approach uses a U-net based neural
network to predict the density of flowering pineap-
ple plants from aerial imagery, enabling farmers to
optimize their harvesting schedule.

1 Introduction
Specialty crops, such as pineapple, present unique challenges
and require sophisticated approaches to maximize productiv-
ity. Growers of large area crops such as corn or soybean have
access to GPS-based yield maps and precisely apply inputs
such as fertilizer and water considering field variability. Spe-
cialty crop growers lack access to these data as their crops
tend to be hand-harvested. Because of this, specialty growers
have been at a disadvantage, having to make decisions with-
out this level of insight.

Growers of these high-value crops make a number of key
decisions in every growing cycle. For pineapple, data sup-
porting these decisions are generally limited to visual ground
observations. But these observations are from the periph-
ery where spatial and temporal variability, stage of growth,
and development cannot be determined or quantified across
the entire field. This lack of complete, real-time informa-
tion about field conditions can lead to poor decisions result-
ing in too little or too much water, fertilization, pesticides and
growth regulators, or poor planning and scheduling of plant-
ing and harvest resources, including equipment and labor.

For pineapple, natural flowering affects fruit development
and quality, and impacts harvest [Bartholomew et al., ].
Pineapple growers use chemicals to induce flowering so that
most plants within a field produce fruit of high quality ready
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Figure 1: Our model identifies the density of pineapple flowering
across multiple blocks of a pineapple field. The flowering density is
depicted as a spectrum from low (yellow) to high (red) and regions
of no-flowering shown as transparent. A single field of this size has
over 1.5 million plants.

to harvest at about the same time. The ideal situation would
be for a grower to harvest the entire field in one pass, sig-
nificantly increasing productivity and eliminating the cost of
additional harvests. This ideal single pass occurs when there
is little spatial and temporal variation in flowering.

Modifying management practices with data on field condi-
tions goes beyond reducing costs for the farmers. By iden-
tifying flowering plants at their earliest stages across entire
fields, the application of chemicals can be precisely applied
and limited in extent. By monitoring the progression of plant
development across the field, harvest times can be optimized
so that fruits are picked at their peak development, limiting
waste and maximizing return.

Our work leverages aerial imagery and the advances of
deep learning to automatically count the number of flowering
pineapple plants, which may be in the millions for a single
field. We use a counting-by-density-estimation approach to
produce a density map of flowers across the field. This ap-
proach enables us to determine the number of fruit across all
regions of the field and identify areas which are ready for har-
vest or delayed in development. Our approach produces good
results, occasionally better than the human annotations, and
is readily amenable to active learning techniques.



2 Related Work
2.1 Counting Methods
Much of the work in the entity-counting space has grown
out of the crowd-counting area [Sindagi and Patel, 2018;
Loy et al., 2013]. Most approaches fall under one of three cat-
egories: counting by detection, counting by regression, and
counting by density prediction [Sindagi and Patel, 2018].

Counting by detection approaches are most applicable
when the entities are well separated, occlusions are limited,
and the number of entities is small. These may take the
form of sliding-window approaches which detect all or part
of the entity in question [Dollar et al., 2011; Li et al., 2008]
and sum the detections over the entire image. With the suc-
cess of Deep Learning, many of these traditional approaches
have been replaced with neural network-based detection and
segmentation algorithms [Ren et al., 2015; He et al., 2017;
Redmon et al., 2016], but these new methods still seek to
solve the counting problem through the localization of all de-
sired entities in the image. A drawback to these methods is
they tend to be computationally heavy, the time complexity
often scales with the number of entities detected, and they
tend to struggle as occlusion becomes more pronounced.

In contrast, counting by regression approaches eliminate
the need to determine precision locations of each entity and
seek only to determine the number of entities present [Chen
et al., 2012; Ryan et al., 2009; Chan and Vasconcelos, 2009];
these approaches also have benefited tremendously from deep
learning based architectures [Wang et al., 2015].

When weak localization in addition to a final count are
desired in the presence of high levels of occlusion, density
estimation approaches have proven very successful [Lem-
pitsky and Zisserman, 2010; Pham et al., 2015; Xu and
Qiu, 2016] especially when combined with deep architec-
tures [Zhang et al., 2016; Boominathan et al., 2016; Onoro-
Rubio and López-Sastre, 2016; Sam et al., 2017; Sam et
al., 2019]. Many of these leverage fully convolutional neu-
ral networks (FCNs) to predict a density [Xie et al., 2018;
Ma et al., 2019] across the image; this density can be inte-
grated to provide the count over a region. Because only re-
gional localization is required, these methods tend to outper-
form detection-based methods in highly occluded scenarios.
Additionally, because the output density map is itself a single-
channel image, the computational complexity is independent
of the number of entities present. Our approach follows these
methods as flowers may be occluded by other portions of the
plant, and the number of flowers in a given image could be
large.

2.2 Counting in Agriculture
Both traditional and deep learning based approaches have
been used for a variety of counting-based agricultural appli-
cations. The work of [Guo et al., 2018; Ghosal et al., 2019;
Malambo et al., 2019] all used detection-based techniques to
detect sorghum heads in a field. Similarly [Gené-Mola et al.,
2020] used Mask-RCNN to fully identify and segment ap-
ples on trees in an orchard. To count palm trees from UAV
imagery, [Li et al., 2017] used a CNN-based detection ap-
proach. Very recently, [Osco et al., 2020] used an approach

very similar to ours to count the number of citrus trees in a
grove. Where they sought to count every tree present, in our
work we seek to count only those plants who have begun to
flower.

3 Methods
3.1 Data Acquisition
Raw imagery was acquired via a DJI Matrice 210 drone
equipped with a DJI X3 three band (RGB) camera flown at a
height of 200ft above the pineapple fields. Individual images
were stitched together using a third party system to produce a
single large-scale image for each block. During the stitching
process, orthorectification is performed using the RGB image
and a digital elevation model (DEM) of the field.

From this full dataset we randomly sampled 866 patches
(512 × 512) across flights over 12 blocks from three fields
for annotations. Annotators marked the center of each flower
with a point-label, producing 76,659 total point annotations.
The data was split such that 650 patches for training and 130
patches for validation were sampled from multiple blocks be-
longing to an initial set of fields and 106 patches for testing
were sampled from blocks belonging to an entirely different
set of fields. That is, no field which appeared in the test set
appeared in either the training or validation sets.

To produce the target density map, the point labels gen-
erated by annotation were blurred using a two-dimensional
isotropic Gaussian filter. That is, given an image Ii with pix-
els p annotated with points P i = {P1, ..., PC(i)} |Pk ∈ R2

where C(i) is the total number of points annotated in that im-
age, we define the ground truth density mapD0

i to be a kernel
density estimate given by:

∀p ∈ Ii, D0
i (p) =

∑
P∈P i

N (p;P, σ212×2) (1)

We explored values in [1, 2, 6, 10, 20] for σ, the standard
deviation of the Gaussian kernel, and found that σ = 6 pro-
vided the best results both in terms of MSE as well as steps
needed for convergence.

3.2 Model
For training, we performed the following augmentation steps:
the original sample (and label) was rotated by a random an-
gle and randomly cropped to 256× 256. For testing and val-
idation, the original 512 × 512 patches were split into four
non-overlapping 256× 256 images.

Our model uses the fully-convolutional encoder-decoder
structure of U-net [Ronneberger et al., 2015], taking in the 3
(RGB) input channels and producing a single-channel output
corresponding to the flower density (Figure 2). Each convo-
lutional block consisted of 3x3 convolution followed by batch
normalization [Ioffe and Szegedy, 2015] and a ReLU nonlin-
earity. Max Pooling with a 2x2 kernel with a stride of 2 was
used in the encoder after every two convolutional blocks. In
the decoder, we use a 2x2 transposed convolution for upsam-
pling. We use same padding throughout.

The final layer consists of a 1D convolution followed by
ReLU activation: this ensures that every point in output layer
is positive, which is required by our density prediction task.
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Figure 2: Our architecture follows the encoder-decoder structure of U-Net where the input is an RGB image and the output is a density map.

Note, that the output density is not required to be [0, 1], but
only positive; if many flowers are located closely together,
their densities could add to greater than 1 in some places. In
practice, we do not see this occur and therefore a final sig-
moid activation could be used in place of the ReLU to en-
force a range of [0, 1]. However, we find that the final ReLU
activation outperforms these alternatives.

We use MSE between the target and predicted density maps
as our loss function and is given by

MSEi =
1
p

p∑
‖Di(p)−D0

i (p)‖22

where we have abused the notation for p to indicate each pixel
in the image I . Adam Optimizer was used with a learning rate
of 0.001, β1 = 0.9, β2 = 0.99, and weight decay of 1e−5.
The model was trained with a batch size of 10 on a machine
equipped with a Tesla P4 for up to 1000 steps; the final model
was halted using early stopping after 630 steps.

3.3 Counting
The output of the U-net is a single channel density map of
the flowering plants across the field. To get the total count of
flowers in a particular region, in this case the sample window,
we integrate over the density map to produce the final count.

In some applications, we may desire to extract a discrete lo-
cation of points from this final density map. We first threshold
the image so regions of low density, below γ, are removed.
Next, we use a 2D local-max finding algorithm common to
most image processing tool-kits to identify peaks requiring a
minimum distance of δ between peaks. We find that γ = 0.05
and δ = 4 work well in practice. The output of this post-
processing step can be seen in the top row, right column of
Figure 3. Note that because of the filtering applied during
this process, the sum over these peaks will always be less
than the overall predicted count obtained by integrating over
the density map.

4 Results and Discussion
Results from our approach are shown in Figure 3. The per-
pixel MSE for both validation and test sets was 0.004.

Qualitatively we see the predicted density maps closely re-
semble the target maps. In certain cases, particularly when
the flowers are redder in appearance (corresponding to earlier
stages of growth), the outputs of the model occasionally ap-
pear more correct than the initial labels. While perhaps seem-
ingly simple on the surface, this is a non-trivial labeling task

Imagery Target Prediction

Figure 3: (Left) Input RGB image. (Middle) Target density maps
generated from the human point annotations and smoothed with a
Gaussian kernel with σ = 6. (Right) Predicted density map. The
output density maps can be filtered to discard regions of very low
density and then a peak-finding algorithm applied to determine dis-
crete locations occupied by flowering plants (shown as red circles
in the top row only for clarity). Particularly when the flowers are
less well defined, the model can be seen to outperform the human
annotations (bottom row).
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Figure 4: The actual vs. predicted number of flowers shown for each
sample in the training and test sets. The black line corresponds to
x=y.

given the variety of flower appearances, stages of flower de-
velopment, density of plant overlap and occlusion. The abil-
ity to convert the density map to discrete peak outputs allows
these results to be re-proposed to human annotators as part
of a Human-in-the-Loop system [Xin et al., 2018]; this re-
duces the burden on human annotators and enables the model
to continue to improve as it is provided additional and more
challenging examples. Optimization and impact of this ap-
proach is the focus of future work.

Integration of the predicted density maps over the entire
image provides us with a prediction of the total flowers. For
each original image we compare the actual number of flowers
to the number predicted by the model as seen in Figure 4. Be-
cause U-net is a fully convolutional network, it is amenable to
figures of variable sizes so long as the pooling operations re-
sult in integer dimensions. So for this analysis, we inferenced
the original 512× 512 images without any augmentation (i.e.
rotation or cropping) in the training, validation, and test sets.
We see that in all three splits, the data falls close to the x=y
line with a mean absolute error (MAE) of 13.9.

The computational efficiency of this approach also offers
key advantages. At inference, a single sample can be run in
under 0.04sec on a single P4 GPU. Especially with appro-
priate compilation steps which would even further increase
efficiency, this speed would enable the model to be run in
real-time, potentially allowing for on-the-fly decision mak-
ing.

5 Conclusion
By leveraging a U-net style deep learning model, we are able
to count the number of flowering pineapple plants in a field,
which may number in the millions, in a matter of seconds.
This automated approach will enable growers to more effec-
tively coordinate their harvesting efforts thereby improving
yield efficiency and reducing waste. This in turn provides fi-
nancial benefits to an industry already under economic stress
while also addressing the global food crisis.

Already this approach has yielded solid results with data
taken from a relatively small number of blocks. Importantly,
the ability to generate discrete point labels from the density
map and the already good performance of the model will al-
low us to rapidly obtain significantly more and better data in
a rapid manner. This application is a prime candidate for ac-
tive learning approaches, which is the focus of ongoing work;
as the model is trained on more fields with a wider range of

appearances and stages of flower development, we expect the
performance to only continue to improve.
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ruda, José Marcato Junior, Neemias Buceli da Silva, Ana
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