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Abstract
Not all patients who need kidney transplant can
find a donor with compatible characteristics. Kid-
ney exchange programs (KEPs) seek to match such
incompatible patient-donor pairs together, usually
with the objective of maximizing the total number
of transplants. We propose a randomized policy for
selecting an optimal solution in which patients’ eq-
uity of opportunity to receive a transplant is pro-
moted. Our approach gives rise to the problem of
enumerating all optimal solutions, which we tackle
using a hybrid of constraint programming and lin-
ear programming. We empirically demonstrate the
advantages of our proposed method over the com-
mon practice of using the first optimal solution ob-
tained by a solver.

1 Introduction
Kidney exchange programs. Chronic kidney disease is a
condition that leads to a slow loss of kidney function with
no cure. In Canada, more than 4 million people suffer
from it [20]. The size of the world population suffering
from chronic kidney failure is increasing at an annual rate
of around 6% [14]. These patients require a renal replace-
ment therapy: kidney transplantation or dialysis. Dialysis
alone corresponds to significant expenditures in the coun-
tries health systems. For instance, it is approximately 1.1%
of total health expenditures in Canada [4]. Transplantation
is generally the preferable treatment because it reduces the
economic burden of dialysis, it has the potential to improve
the patient life quality and to yield longer longevity. Typi-
cally, patients are registered in a waiting list for a deceased
donor transplantation or they can receive a direct transplan-
tation from a compatible donor who is a friend or a rela-
tive. To overcome the long waiting times in these lists and
to take advantage of incompatible patient-donor pairs, Kid-
ney Exchange Programs (KEPs) have been implemented in
several countries such as United Kingdom [19], The Nether-
lands [7], and Canada [18]). By gathering incompatible
patient-donor pairs as well as altruistic donors, KEPs seek
to maximize the patients benefit through the exchange of
donors. The literature on the development of algorithms to
compute exchange plans that maximize the patients bene-
fit has focused in integer programming approaches [1; 17;
9]. In concrete, the typical objective is to maximize the num-
ber of transplants. Some KEPs, like the Dutch Program, use
additional hierarchical criteria [16].
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The problem. In [5], using simulated instances of the Cana-
dian program, it is showed that very frequently there is a large
number of optimal solutions for a current pool of incompati-
ble pairs. Currently, the KEP solution computed by the algo-
rithms in place is the one being carried out. Note that such
a solution highly depends on the order in which the instance
is inputted in the system and how the optimization is imple-
mented. Such dependence is not controlled by the user and
thus, it can deeply affect the evolution of the KEP pool. For
instance, in the Canadian program, an accumulation of hard-
to-match patients has been observed. Solution selection has a
significant impact on the lives of the patients and evolution of
the KEP pool overtime. Consequently, special care must be
taken to ensure fairness in this process.
Contributions. Recently, in the context of machine learning,
concepts of individual and group fairness have been broadly
discussed [12]. While individual fairness aims to treat similar
individuals similarly, group fairness aims to establish simi-
lar treatment among groups (subsets) of individuals. To the
best of our knowledge, the literature has exclusively focused
on group fairness on KEPs, generally, associated with the set
of highly-sensitized (hard-to-match) patients, and subject to a
potential detioration on the maximum number of transplants.
In this paper, we introduce for the first time individual fair-
ness as the supporting policy on solution selection. In con-
crete, we develop randomized processes among the sets of
optimal solutions with the goal of favouring equity on the pa-
tients’ likelihood of being in a selected solution. In partic-
ular, our processes avoid the ethical subjectivity of defining
patients priority directly through their characteristics. Fur-
thermore, we propose different methodologies to tackle the
difficult problem of computing all optimal solutions.

2 Kidney exchange program
Mathematically, a KEP instance can be represented as a graph
G = (V,A), where V is the union of the set of incompatible
pairs P together with the set of altruistic donors N , and A
is the set of arcs representing compatibilities. There are two
types of possible exchanges: cycles and chains. A cycle in
G guarantees that the patient associated with a donor donat-
ing a kidney also receives a transplant. A chain is a path
(v0, v1, . . . , vn) in G starting in an altruistic donor v0 ∈ N
and with {v1, . . . , vn} ⊂ P . The donor of the last involved
pair in a chain becomes an altruistic donor for the next KEP
or he/she donates in the waiting list for deceased donation.
In the right of Figure 1, (1, 3, 2) is a cycle of length 3 and
(5, 3, 4) is a chain of length 3. Selected chains and cycles
must be disjoint since donors can only donate one kidney.
Furthermore, in Europe, their lengths are limited to three
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Figure 1: Left: Kidney exchange. Right: Compatibility graph for a
KEP.
or four while, e.g. in the US, there is no limit on chains
length [3]. In [10] it is argued that there is no advantage on
considering chains larger than three. Therefore, based on the
practical interest of cycles and chains of length at most 3, and
for sake of simplicity, in this paper, we concentrate in this
case. Nevertheless, our framework can be generalized to any
length limit, although large lengths must result in slower run-
ning times.

The goal of KEP is to determine a set of disjoint chains
and cycles representing the kidney exchanges to be performed
such that the number of the patients receiving a transplant is
maximized.

Integer programming formulations have been broadly used
to model KEP: cycle formulation [1], edge formulation [21],
position-indexed formulation [9]. The cycle formulation is
the simplest to describe. Let C be the set of all allowed cycles
and chains of G and wc for c ∈ C, the benefit of the exchange
c. Then, the formulation is the following:

P(C) : max
∑
c∈C

wcxc (1a)

s.t.
∑
c:v∈c

xc ≤ 1 ∀v ∈ V (1b)

xc ∈ {0, 1} ∀c ∈ C. (1c)
The decision variables xc take value 1 if c is a selected ex-

change and 0 otherwise. Constraints (1b) enforce that each
donor and patient participates in at most one exchange. Con-
straints (1c) introduce the binary requirement for x. The ob-
jective function (1a) maximizes the benefit of the selected
exchanges. The wc is the number of patients involved on ex-
change c.

3 Related literature
In what follows, we review the literature on fairness asso-
ciated with KEPs. As mentioned before, the main goal of
KEPs is to maximize the benefit of the patients. In this way,
weights are associated with each feasible exchange in order
to reflect some utilitarian and priority criteria. The baseline
is to associate weights that allow to maximize the number of
transplants while prioritizing certain patients. For instance,
highly-sensitized patients have a low probability of being
compatible with a random kidney. In this context, Dickerson
et al. [11] concentrate on the trade-off of moving from max-
imizing the number of transplants (utilitarian objective func-
tion) towards maximizing the number of highly-sensitized pa-
tients receiving a kidney. Freedman et al. [13] focus on the
fact that such prioritization can depend on human values. In
this work, we do not use weights in the objective function.
Instead of empirically bringing fairness to the solution, we
effectively enforce it by characterizing the set of all optimal
solutions (this is, exchange plans maximizing the number of
transplants). Gao [15] provides a theoretical study on fairness
also considering that KEPs run over time. Two prioritizing
rules are analyzed, prioritization of critical patients (patients
in a critical situation with high mortality rates) or highly sen-

δ v1 v2 v3 v4 v5 v6

0.4 S1 1 1 1 0 0 0
0.2 S2 0 1 1 1 0 0
0.4 S3 0 0 1 1 0 1

pδ 0.4 0.6 1 0.6 0 0.4

Table 1: Optimal solutions for the compatibility graph of Figure 1.
The selection strategy (left) determines the vertex probabilities (bot-
tom).
sitized patients in each run of KEP, and compared in terms of
their fairness over time (defined as the number of losses, i.e.,
patients who perished).

All the works mentioned above concentrate on group fair-
ness, namely hard-to-match and critical patients. In this
paper, we propose a new direction that does not consider
the characteristics of groups of patients, but their individual
chances. Furthermore, our approach has no extra cost of fair-
ness (as discussed by [11]) since we always select an optimal
solution (i.e., it guarantees the maximum number of trans-
plants).

4 Fairness
When a KEP instance has multiple solutions (such that they
differ in terms of patients who receive transplants), by pick-
ing any solution we are inevitably favoring the individuals
included in the solution over the excluded individuals. Our
proposal for enforcing fairness in this process is to design a
randomized process for selecting an optimal solution which
promotes equal chances of receiving a transplant among the
patients.
Definition 1. Let S be the set of optimal solutions of a KEP
instance. A selection strategy δ is a distribution over S. The
probability that the patient v receives a transplant according
to the strategy δ is called a vertex probability and is denoted
by pδ(v) =

∑
S:v∈S δS .

Table 1 shows a selection strategy for the running example.
The common practice is to select the first optimal solution
returned by a solver. We call this the first-best strategy. The
strategy which assigns equal probabilities to all solutions (i.e.
δ(S) = 1

|S| ) is called the uniform strategy.
Intuitively, we prefer a selection strategy which yields sim-

ilar chances for the patients. We can quantify this quality in
terms of the dispersion between the vertex probabilities. An
example is the mean absolute deviation, i.e.

∑
v |pδ(v)−m|

where m = 1
|V |

∑
v pδ(v). Alternatively, one can measure

the quality of a strategy in terms of the vertex with the lowest
probability, i.e. minv pδ(v). A strategy can be defined over a
subset of solutions by assigning zero to every solution which
is not included in the subset.
Definition 2. A subset of optimal solutions Sk ⊆ S is called
covering if every vertex which appears in some solution in S
also appears in some solution in Sk.

In Table 1, {S1, S3} is a covering subset, while {S1, S2}
is not. Any strategy defined over the latter will reduce the
chances of v6 to zero.

4.1 Computing the strategies
Assuming that we have the set of optimal solutions, we are
interested in obtaining the best strategy according to some
criterion that reflects fairness. We will now show that for cer-
tain criteria, the optimal strategy can be obtained by solving
a linear program.



Minimizing the Mean Absolute Deviation. The goal is to
determine the selection strategy δ such that it minimizes the
absolute mean deviation (MAD) of each vertex in a selected
solution. In other words, we aim to find the distribution δ that
minimizes

∑
v∈P |yv−

1
|P |
∑
v∈P yv| where yv =

∑
S:v∈S δ(S)

is the probability of the vertex v in a selected solution.
The minimization of the mean absolute deviation problem

can be formulated as a linear program. Let variables δS and
yv denote the probabilities of solution S and vertex v. Let z
represent the mean vertex probability and dv represent the de-
viation of yv from the mean. The optimal strategy is obtained
by solving the following linear program:

min
∑
v∈P

dv (2a)

s.t.
∑
S∈S

δS = 1 (2b)

yv =
∑
S:v∈S

δS ∀v ∈ P

(2c)∑
v∈P

yv = |P | · z (2d)

dv ≥ yv − z ∀v ∈ P (2e)
dv ≥ z − yv ∀v ∈ P (2f)
0 ≤ δS ≤ 1 ∀S ∈ S (2g)
0 ≤ yv ≤ 1 ∀v ∈ P. (2h)

Constraints (2b) and (2g) ensure that δ is a probability dis-
tribution over S. Constraints (2c) and (2h) establish yv as
the probability of vertex v. Constraint (2d) makes z equal to
the mean over y. Finally, Constraints (2e) and (2f) lead to
dv ≥ |yv − z|, which together with the minimization of the
objective function implies dv = |yv − z|.
Maximizing the Minimum Vertex Probability. In this
case, the goal is to maximize the probability of the vertex with
the least chance of being in a selected solution (Maxmin).
Mathematically, it means to find the selection strategy δ that
maximizes minv∈P

∑
S∈S δS . Next, we formulate the max-

imization of the mininum vertex probability as a linear pro-
gram. Keeping the same definition as above for variable δS
and letting variable z denote the probability of the least well-
off vertex. The strategy which maximizes this smallest prob-
ability is obtained using the following formulation:

max z (3a)

s.t. z ≤
∑
S:v∈S

δS ∀v ∈ P (3b)

∑
S∈S

δS = 1 (3c)

0 ≤ δS ≤ 1 ∀S ∈ S. (3d)
Again, constraints (3c) and (3d) ensure that δ is a probability
distribution over S. Constraints (3b) enforce z to be upper
bounded by the smallest probability for a vertex v, while the
objective function (3a) maximizes z (and thus, the lowest ver-
tex probability).

5 Methodology
The selection strategies described in the previous section re-
quire us to compute S, i.e., the set of all optimal solutions.
However, even computing the size of S when the KEP is re-
stricted to exchanges of length at most 2 is known to be a #P-
complete problem [22]. In what follows, we describe three
techniques to perform this task.

5.1 No-good cuts
Let OPT be the optimal solution of P(C), then all its optimal
solutions (i.e., S) can be determined in an iterative way by

solving the original KEP formulation in Section 2 in iteration
K + 1 while adding the following constraints:∑

c∈C:xkc=0

xc +
∑

c∈C:xkc=1

(1− xc) ≥ 1 k = 1, . . . ,K (4a)

where xk is an optimal solution ofP(C) determined in a pre-
vious iterations. Constraints (4a) are the so-called no-good
cuts [2] and, in order to be satisfied, the solution must differ
in at least one entry for each xk. Clearly, once Problem (4)
becomes infeasible, then all optimal solutions have been de-
termined. Furthermore, since there is a finite number of fea-
sible exchanges, this iterative method will stop in finite time.
We implemented the no-good cuts using lazy constraints.

5.2 Constraint programming formulation
We will now present a Constraint Programming (CP) model
for the problem of enumerating the optimal solutions of KEP.
First, to facilitate modeling, we slightly modify the KEP com-
patibility graph by adding a self-loop to every vertex. We de-
fine an array of variables X indexed by the vertices v ∈ V .
The variable X[v] represents the successor of v in some path,
and its domain is defined as {v} ∪ {u : (v, u) ∈ A}. A self-
loop is represented by assigning v to X[v]. In Figure 1, the
array X has 6 entries and domain of X[v3] is {v2, v3, v4}.
The constraints of the CP model are as follows:

AllDifferent(X) (5a)(
X[v] = v

)
∨
(
X[X[v]] = v

)
∨
(
X[X[X[v]]] = v

)
∀v ∈ V (5b)∑

v∈V

(
X[v] 6= v

)
= OPT. (5c)

The constraint AllDifferent(X) requires that all variables in
X take different values. It is easy to show that under this
constraint, the successor variables define a set of cycles (in-
cluding self-loops). Observe that when a vertex appears in a
self-loop, it is excluded from the matching.

Recall that the length of every cycle in the solution should
be at most three. The constraint set (5b) enforces that each
vertex is either in a self-loop, or a cycle of length two or
three. Finally, given the optimal solution OPT, constraint (5c)
ensures that the solution of the model is an optimal matching.

We also designed a specialized constraint for KEP prob-
lems, which replaces constraints 5a-5b in the CP model. Our
propagator builds on the ideas and principles employed by
the Compact-Table (CT) algorithm for filtering the Table con-
straint [8].

5.3 Finding a covering set of solutions
In Section 4 we argued that instead of enumerating all so-
lutions, one can use any covering subset of solutions. We
can use constraint programming for generating a cover. Let
V ′ denote the set of indices of vertices which are not yet
covered by any solution during the search. After finding
each solution, we update V ′ and add the following constraint∨
v∈V ′ X[v] 6= v which requires that the next solution con-

tains some vertex which has not appeared in the previous so-
lutions. We can also adapt the specialized constraint to this
setting.

6 Experimental evaluation
We investigate three research questions in our experiments:
Q1 How scalable are the proposed methods for enumerating
the optimal solutions?, Q2 What is the effect of graph size
on the number of optimal solutions?, and Q3 To what extent
does our proposed method enhance the equity of chances for
receiving a transplant?



Datasets For all the empirical evaluations that are presented
in this section, we use two datasets which we call them the
Canada and the US dataset. For the Canada dataset, we use
a generator that is described in [5] to create instances for our
experiments. For the US dataset, we use the same samples
as [6]1. In both of our dataset, the number of graph vertices
ranges over 9 values: 20, 30, . . . , 100. There are 50 different
instances per graph size, amounting to a total of 900 different
graphs in total.
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Figure 2: Performance profiles of different approaches for enumer-
ating optimal solutions

In Section 5, we proposed four approaches to enumerate
optimal solutions. To address Q1, we present the performance
profiles of those methods in Figure 2. These include the
no-good-cut approach of Section 5.1 (MIP-lazy-cut), the CP
model of Section 5.2 (CP-standard), the CP model equipped
with a specialized propagator (CP-specialized), and the CP
approach for greedy covering (CP-greedy) of Section 5.3.

Among the three methods which enumerate all optimal so-
lutions, CP-specialized performs the best in enumerating the
solutions of graphs with as many as 70 vertices. This is a con-
siderable improvement over the MIP-lazy-cut method which
scales to graphs with at most 40 vertices. Figure 2 shows that
the CP-greedy method successfully finds a solution set for the
majority of instances, often within a short amount of time.

To answer Q2, we inspect the optimal solutions obtained
by CP-specialized. The average number of solutions over
graphs of different sizes are reported in the top half of Ta-
ble 2. Increase in the graph size is accompanied by a sig-
nificant increase in the count of optimal solutions, which in
turn correlates with the increased difficulty of the enumera-
tion task. Observe that two different solutions can be equiv-
alent in terms of patients that they cover (i.e. the same set of
patients receive transplants in different cycles). For this rea-
son, in a pre-processing step, we extract the unique set of so-
lutions. The bottom part of Table 2 shows the average counts
of these unique solutions. It is notable that even after remov-
ing the equivalent solutions, we could still have hundreds of
thousands of unique optimal solutions.

20 30 40 50 60 70
Canada 32 2,358 267,830 815,822 206,492 640,351
US 247 7,213 231,854 750,636 559,414 807,649
Canada 20 505 16,031 19,051 26,810 114,389
US 155 5024 142,517 264,419 164,292 231,347

Table 2: The average number of optimal solutions per graph size,
before extracting the unique solutions (top) and after (bottom).

The large number of solutions in Table 2 indicates the im-
portance of employing a selection procedure to ensure fair-

1Available at https://rdm.inesctec.pt/dataset/ii-2019-001
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Figure 3: Comparing different selection strategies in terms of the
Maxmin and MAD measures. The horizontal axis shows the graph
size.
ness. To address Q3 and measure the impact of our fairness-
aware selection strategies, we analyze the quality of these
strategies with the first-best and uniform solution selectors
using both CP-specialized and CP-greedy approaches. We
compare the probability of receiving a transplant for all ver-
tices based on the Maxmin and MAD measures (for details see
Section 4). The results are summarized in four plots that are
presented in Figure 3.

The two plots on the top compare different selection strate-
gies with respect to the probability of the most disadvan-
taged vertex (higher is better). These probabilities are av-
eraged over 50 instances per graph size. It is observed
that the enumeration-based strategies significantly improve
the chances of the least well-off vertex, especially in larger
graphs (where this chance approaches zero). The two plots
on the bottom of Figure 3 compare the strategies in terms of
the mean absolute deivation of all vertex probabilities (lower
is better). Again, the enumeration-based methods dramati-
cally outperform the baseline .

Two observations are in order. First, the uniform strategy is
consistently competitive with the optimal strategy, while be-
ing much easier to calculate. Second, the greedy method pro-
vides high-quality results despite enumerating only a small
subset of the optimal solutions. While our CP-specialized can
scale up to 70 vertices, it is worth recalling that the CP-greedy
scales to larger graphs which makes our approach more prac-
tical and scalable for various sizes of KEP.

7 Conclusion & future directions

In this work, the problem of individual fairness on KEPs is
investigated for the first time. In order to tackle this issue,
we propose two fair random processes for solution selection.
Our computational experiments demonstrate the importance
of our proposed approach in ensuring fairness among the pa-
tients. We believe this work has the potential to spark more
research on fairness for solution selection in healthcare. An
open question worth future investigation is the impact of our
proposed selection strategies on the KEP pool over time.

https://rdm.inesctec.pt/dataset/ii-2019-001
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