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Abstract
As the COVID-19 pandemic continues, formulat-
ing targeted policy interventions supported by dif-
ferential SARS-CoV2 transmission dynamics will
be of vital importance to national and regional gov-
ernments. We develop an individual-level model
for SARS-CoV2 transmission that accounts for
location-dependent distributions of age, household
structure, and comorbidities. We use these distri-
butions together with age-stratified contact matri-
ces to instantiate specific models for Hubei, China;
Lombardy, Italy; and New York, United States.
We then develop a Bayesian inference framework
which leverages data on reported deaths to obtain a
posterior distribution over unknown parameters and
infer differences in the progression of the epidemic
in the three locations. These findings highlight the
role of between-population variation in formulating
policy interventions.

Introduction
Since December 2019, the COVID-19 pandemic – caused
by the novel coronavirus SARS-CoV2 – has resulted in sig-
nificant morbidity and mortality [Baud et al., 2020]. As
of May 19, 2020, an estimated 4,800,000 individuals have
been infected, with over 318,000 fatalities worldwide [Cen-
ter for Systems Science and Engineering at Johns Hopkins
University, 2020]. Key factors such as existing comorbidi-
ties and age have appeared to play a role in an increased
risk of mortality [Zhou et al., 2020]. Epidemiological stud-
ies have provided significant insights into the disease to
date [Xu et al., 2020; Riou and Althaus, 2020; Li et al., 2020;
Kucharski et al., 2020]. However, as national and regional
governments begin to implement broad-reaching policies in
response to rising case counts and stressed healthcare sys-
tems, tailoring these polices based on an understanding of
how population-specific demography impacts outbreak dy-
namics will be vital. Previous modeling studies have largely
not incorporated the rich set of household demographic fea-
tures needed to address such questions.

This study employs mathematical modeling to assess how

the distribution of age, comorbidities, and household con-
tacts in a population impact the utility of potential non-
pharmaceutical interventions and overall transmission dy-
namics. We develop a stochastic agent-based model for
SARS-CoV2 transmission which accounts for distributions of
age, household types, comorbidities, and contact between dif-
ferent age groups in a given population (Fig. 1). Our model
accounts for both within-household contact (simulated via
household distributions taken from census data) and out-of-
household contact using age-stratified, country-specific esti-
mated contact matrices [Prem et al., 2017]. We instantiate
the model for Hubei, China; Lombardy, Italy; and New York,
United States, developing a Bayesian inference strategy for
estimating the distribution of unknown parameters using data
on reported deaths in each location. This enables us to tease
out differences in the progression of the epidemic in the three
locations.

Model description
We develop an agent-based model for COVID-19 spread
which accounts for the distributions of age, household types,
comorbidities, and contact between different age groups in a
given population. The model follows a susceptible-exposed-
infectious-removed (SEIR) template [Van den Driessche et al.,
1999; Ball et al., 2015]. Specifically, we simulate a popula-
tion of n agents (or individuals), each with an age ai, a set
of comorbidities ci, and a household (a set of other agents).
We stratify age into ten-year intervals and incorporate hyper-
tension and diabetes as comorbidities due to their worldwide
prevalence [Roth et al., 2018] and association with higher
risk of in-hospital death for COVID-19 patients [Zhou et al.,
2020]. We track agents through the process of social contact,
becoming infected with the disease, and progressing through
more severe forms of the disease until either death or recov-
ery.

The disease is transmitted over a contact structure, which is
divided into in-household and out-of-household groups. Each
agent has a household consisting of a set of other agents
(see the SI for details on how households are generated us-
ing country-specific census information). Individuals infect
members of their households at a higher rate than out-of-
household agents. We model out-of-household transmission
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Figure 1: We use a modified SEIR model, where the infectious states
are subdivided into levels of disease severity. The transitions are
probabilistic and there is a time lag for transitioning between states.
For example, the magnified section shows the details of transitions
between mild, recovered, and severe states. Each arrow consists of
the probability of transition (e.g., pm→s(ai, ci) denotes the proba-
bility of progressing from mild to severe) as well as the associated
time lag (e.g., the time t for progression from mild to severe is drawn
from an exponential distribution with mean λm→s). ai and ci denote
the age and set of comorbidities of the infected individual i.

using country-specific estimated contact matrices [Prem et
al., 2017]. These matrices state the mean number of daily
contacts an individual of a particular age strata has with indi-
viduals from each of the other age strata.

The model iterates over a series of discrete time steps,
each representing a single day, from a starting time t0 to an
end time T . There are two main components to each time
step: disease progression and new infections. The progres-
sion component is modeled by drawing two random vari-
ables for each individual each time they change severity lev-
els (e.g. on entering the mild state). The first random variable
is Bernoulli and indicates whether the individual will recover
or progress to the next severity level. The second variable
represents the amount of time until progression to the next
severity level. We use exponential distributions for almost
all time-to-event distributions, a common choice in the ab-
sence of specific distributional information [Allison, 2010;
Collett, 2015]. The exception is the incubation time between
asymptomatic and mild states, where more specific informa-
tion is available; here, we use a log-normal distribution based
on estimates by [Lauer et al., 2020]. Details on parameter
choices, including estimating the probability of progression
by age and comorbidity status, are deferred to a full version
of the paper.

In the new infections component, infected individuals in-
fect each of their household members with probability ph at
each time step. ph is calibrated so that the total probabil-
ity of infecting a household member before either isolation
or recovery matches the estimated secondary attack rate for
household members of COVID-19 patients (i.e., the average
fraction of household members infected) [Liu et al., 2020].
Infected individuals draw outside-of-household contacts from

the general population using the country-specific contact ma-
trix. For an infected individual of age group i, we sample
ws

ij ∼ Poisson(Ms
ij) contacts for each age group j and set-

ting s where Ms is the country-specific contact matrix for
setting s (from [Prem et al., 2017]). We include contacts in
work, school, and community settings. Then, we sample ws

ij
contacts of age j uniformly with replacement, and each con-
tact is infected with the probability pinf, the probability of in-
fection given contact.

Inference of posterior distributions
We infer unknown model parameters and states in a Bayesian
framework. This entails placing a prior distribution over the
unknown parameters, and then specifying a likelihood func-
tion for the observable data, the time series of deaths reported
in a location. We posit the following generative model for the
observed deaths:

pinf, dmult, t0 ∼ U
d1....dT ∼ ABM(pinf, dmult, t0)

ot ∼ NegativeBinomial(dt, σ2
obs) t = 1...T

where U denotes a joint uniform prior, ABM denotes a
draw from the stochastic agent-based dynamics, d1...dT are
the time series output by the simulation, and o1...oT are the
number of deaths observed on the corresponding dates. We
model the observations as drawn from a negative binomial
distribution (appropriate for overdispersed count data) with
dispersion parameter σ2

obs. We separately estimated σ2
obs by

fitting an autoregressive negative binomial regression to the
observed counts using the R package tscount [Liboschik et
al., 2015]. The negative binomial observation model was
strongly preferred to a Poisson model by AIC values. To-
gether, the likelihood function is given by

L(pinf, dmult, t0, d1...dT ) =

t∏
t=1

Pr
[
ot|dt, σ2

o

]
.

To obtain the posterior distribution, we use Latin hyper-
cube sampling to draw many (10-80 thousand per location,
depending on the size of the prior ranges) samples from the
joint uniform prior over pinf, dmult and t0, and then sample the
latent variables d1...dT at each combination of parameters.
We compute the likelihood for the full sample (including the
latent variables). This allows us to use importance sampling
to resample values of (pinf, dmult, t0, d1...dT ) according to the
posterior distribution. Finally, we marginalize out d1...dT to
obtain the posterior over the parameters pinf, dmult, t0, along
with unobservable state variables of the simulation such as
the number of infected individuals at each step.

Application to Hubei, Lombardy, and New
York City
Using the model, we estimate posterior distributions over un-
observed quantities which characterize the dynamics of the
epidemic in a particular location. We present estimates for
two quantities. First, the basic reproduction number r0. Sec-
ond, the rate at which infections are documented. Neither
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Figure 2: Posterior distribution over the number of deaths each day compared to the true number of reported deaths. Light blue lines are
individual samples from the posterior, green is the median, and the black dots are the number of reported deaths. The red dashed line
represents the start of modeled contact reductions in each location. Left to right: Hubei, Lombardy, New York.
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Figure 3: Predictive posterior for each location as a function of when the training period ends. Top row: Hubei; middle row: Lombardy;
bottom row: New York. Black dashed line: end of training period. Green line: posterior median. Blue shaded region: 90% credible interval.
Pink dots: training data. Black dots: held-out data. The 90% credible interval of the predictive posterior includes contains the held-out data
at nearly all points, including when the model is fit using only data from the earliest portion of the epidemic.

quantity is directly observable in the data due to substantial
underdocumentation of infections. However, these estimates
are needed to characterize the scope of the outbreak in a par-
ticular place, the degree to which existing testing strategies
capture new infections, and the rate at which infections are
expected to increase in the absence of any intervention. These
findings are critical to formulate policy interventions which
are responsive to the outbreak as it evolves in a given popula-
tion.

There are three parameters for which values are not pre-
cisely estimated in the literature, and which we place prior
distributions over. First is pinf, the probability of infection
given contact with an infected individual. This determines the
level of transmissibility of the disease. Second, t0, the start
time of the infection, which is not precisely characterized in
most locations and has an impact due to rapid doubling times.
Third, a parameter dmult, which accounts for differences in

mortality rates between locations that are not captured by de-
mographic factors in the model (e.g., the impact of variation
in health system capacities). dmult is a multiplier applied to
the baseline mortality rate from [Verity et al., 2020]. We in-
corporate reduced person-to-person contact after mobility re-
strictions were imposed in each location, basing the strength
of the effect on post-lockdown contact surveys [Zhang et al.,
2020] or mobility data from mobile phones [Google, 2020].

By conditioning on the observed time series of deaths, we
obtain a joint posterior distribution over both the three un-
known parameters and unobserved model states such as the
number of people infected at each time step. We use reported
deaths because they are believed to be better documented than
infections, and perform a sensitivity analysis to account for
possible underdocumentation of deaths [Katz et al., 2020;
Modi et al., 2020].
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Figure 4: Posterior distribution over r0 and the fraction of infections
documented in each location. Left: conditioning on reported deaths.
Right: conditioning on deaths being twice what was reported.

Validation
Fig. 2 shows that the posterior distribution of the model
closely reproduces the observed time series of deaths in each
location. As an additional check, Figure 3 shows validation
on out-of-sample data for each location. Each plot shows the
result of conditioning on observations only up until a speci-
fied time point. Then, we show the predictive posterior dis-
tribution over the data which was not used for training. Even
when given training data only from the early stages of the
epidemic, the model is able to capture the basic features of
the outbreak. The timing of the peak in deaths is matched
well across all three locations, and the observed deaths nearly
always lie within the 90% credible interval of the predictive
posterior. As expected, the fit improves as more training data
becomes available. However, the model’s predictions become
substantially more accurate even before the peak in deaths is
observed in the training data (the second column). While ac-
curate forecasting is not our primary aim (rather, our goal is
to make inferences about the dynamics of the outbreak as it
occurred in each location), reasonable behavior by the predic-
tive posterior helps guard against the possibility of overfitting.

Inferring differences in dynamics between
populations
The top row of Fig. 4 shows the posterior distribution over r0
in each location. Substantial differences are evident between
the three locations. The posterior median is 2.21 in Hubei
(90% credible interval: 2.10–2.41), 2.80 in Lombardy (2.66–
3.01), and 3.06 in New York (2.65–3.59). The estimates for
Hubei fall within the range of a number of existing estimates
[Majumder and Mandl, 2020], while the interval for Lom-
bardy is lower than the interval 2.9–3.2 estimated by previous
work [Guzzetta et al., 2020]. The estimated r0 for New York
is larger than either Hubei or Lombardy. The main between-
population differences are not impacted by a sensitivity anal-
ysis for underreporting of deaths, shown in Figure 4. Death
totals from Hubei have been substantially revised upwards to
correct for underreporting in the early stages of the epidemic
[British Broadcasting Corporation, 2020], but such correc-
tions are either unavailable or rapidly evolving for Lombardy

and New York. Our sensitivity analysis assumes that deaths
in Lombardy and New York are twice what was reported,
consistent with excess mortality data [Katz et al., 2020;
Modi et al., 2020]. The comparison across populations is
unaltered.

The bottom row of Fig. 4 shows the posterior distribu-
tion over the fraction of infections which were documented
in each location (obtained by dividing the number of con-
firmed cases in each location by the number of infections in
the simulation under each sample from the posterior). Docu-
mentation rates are uniformly low, indicating undocumented
infections in all locations. However, we estimate lower doc-
umentation in Lombardy (90% credible interval: 5.7–7.3%)
than in either New York (4.8–13.1%) or Hubei (6.5–12.2%).
While this general trend is consistent with previous estimates
by Russell et al. [Russell et al., 2020], our estimates are sub-
stantially lower. One potential explanation is that Russell et
al. estimate documentation from death data using a case fa-
tality rate (CFR) from the literature while our model uses a
infection fatality rate (IFR). The IFR is lower because it in-
cludes all infections, not only those that become confirmed
cases. This approach requires more infections to account for
a given number of deaths.

Although we estimate more undocumented infections, all
locations remain potentially vulnerable to second-wave out-
breaks, with the median percentage of the population infected
at 7.5% in Hubei, 11.7% in Lombardy and 25.2% in New
York. Recent serological surveys have estimated 25% in-
fected in New York [CBS New York, 2020], consistent with
our distribution. When assuming twice the number of re-
ported deaths, the median percentage infected is 23.4% in
Italy and 38.6% in New York. Overall, our estimates for r0
and the remaining population of susceptible individuals indi-
cate that Hubei, Lombardy, and New York could experience
new outbreaks in the absence of continued interventions to
reduce transmission. Despite this, between-population differ-
ences remain substantial: Hubei, Lombardy, and New York
have had distinct experiences with COVID-19 which will
continue to shape future policy responses.

Conclusion
We developed an agent-based model of SARS-COV2 trans-
mission which accounts for population-specific demographic
structure, along with a Bayesian framework for conducting
inference of unknown model parameters. We observe wide
variation across locations in the dynamics and progression of
the epidemic. Ongoing work will explore the policy implica-
tions of these results, tracing out how the impact of interven-
tions may differ between populations. We hope that develop-
ing methods which allow a finer-grained understanding of the
COVID-19 epidemic will help policymakers formulate more
targeted and effective responses.
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